Why material innovation is the key to a sustainable future

Throughout human history, we have adapted and overcome many challenges. Since the dawn of time, we have searched for materials to enhance everyday life. From tools made from stone to advanced plastics and experimental material sciences, there is no doubt that material innovation can change our lives for the better.

Close-up of flax on a white background

We begin our journey by taking a trip down memory lane. Starting at circa 3000 BCE where early humans, seeking shelter from the elements, stumbled upon nature's primitive toolkit.

A collection of sturdy rocks strewn across the Earth. A scene reminiscent of Kubrick's '2001: A Space Odyssey' or Gerwig's 'Barbie' opening scene immediately comes to mind.

Yet, even in the modern world, the enchantment and uses of stone endure. To this day, we see stone materials in almost every direction we look. Even just by looking out the window from Polestar HQ, a stone in marble greets us with its ambitions.

The illuminating metal

Fast-forward to today (well, to 1825), and the discovery of aluminum. We have Danish chemist Hans Christian Ørsted to thank for this lightweight marvel. It revolutionized the transportation industry and transformed the possibilities of design.

Despite its sustainable potential, the ability to recycle aluminum doesn't come without its complications. With over 500 different types of aluminum, recycling plants have a huge task identifying and sorting them. This results in the contamination of different variants and stops the recycled aluminum from being suitable for high-grade applications.

The solution to this is elegantly simple: labeling and color-coding. This enables recyclers to differentiate between grades and recycle them separately, which in turn closes the loop on the material.

Convenience meets conservation

In 1907, Belgian chemist Leo Baekeland synthesized the first plastic and beat his rival to the patent office by one day. Today, it's everywhere. While its flexibility has revolutionized manufacturing, plastics' dependence on fossil resources has sparked a call for change.

One of the most commonly used plastics, polyvinyl chloride (PVC), uses crude oil in its production, which we all know is damaging to the environment.

However, recent work in material science has seen crude oil replaced with pine oil in plastics production. Doing so cuts down greenhouse gas emissions by 70%. The bio-attributed PVC is the first of its kind and is used in the Polestar 3 upholstery, further lowering the carbon footprint of our fleet.

Super-efficiency and levitating trains

Let's venture into a different territory that's also been on many people's radars lately but for different reasons. Semiconductors, as we know, are in huge demand globally.

In the midst of all this, research on superconductors continues. Imagine a world where electricity flows without resistance, where trains levitate, and energy loss becomes a thing of the past.

Not long ago, this was just that – something for the imagination – due to the material requiring ultra-low temperatures or immense pressure in order to work.

However, new developments in a study claim to have achieved a well-above-room-temperature superconducting material at ambient pressure – a feat that basically affects everything that runs on electricity. You can imagine our excitement.  

Since the publication of the study, laboratories all over the world are racing to replicate the results. Reports are already coming in with successful outcomes!

Bio-attributed MicroTech used in the Polestar 3 upholstery.

An alchemist's dream

From one groundbreaking material to another, we've arrived at a category that blurs the lines between natural and synthetic: composite materials. These fuse the best of both worlds to deliver performance that exceeds the sum of its parts.

At the heart of composites, we find fibers – delicate strands of natural or synthetic origin that form the backbone of these creations. Used in everything from spacecrafts to golf clubs to Polestar 1, there is carbon fiber, perhaps the best-known of all composite materials.

But this is just the tip of the iceberg when it comes to composites. In Polestar 3, we are using Bcomp's natural fiber composite. The material is made from European-grown flax and is nearly as strong as carbon fiber, but is 40% lighter and uses 50% less virgin plastics than plastic equivalents.

Flax can even be used to revitalize farmland between seasons to prevent exhaustion of the soil.

Mankind's never-ending advancement of technology has meant there has never been a pause in our material innovation.

Now we face a new challenge. How we can continue to live convenient and exciting lives, but reduce our environmental impact. This question is at the forefront of scientific innovation and with time being of the essence, expect the materials we encounter in our day-to-day lives to change dramatically over the coming years.

Related

Cam and Lana Graves with their Polestar 2

What's in my frunk: with Cam and Lana Graves

Welcome to episode two of ‘What’s in my frunk’, where we follow athletes and adventurers in their daily escapades and uncover the essentials in their trunk and frunk. Whether it’s snowboarding north of the Arctic Circle or endurance running in the South Island of New Zealand, there are no limits. Today, it’s all about the latter.